Table of Contents

1 Coal in the Ground

1.1 Introduction

1.2 The Coalification Process
 1.2.1 Peat Formation
 1.2.2 Coal Seam Formation
 1.2.3 Theories of Deposition
 1.2.4 Coalfield Formation

1.3 “Gondwanaland”

1.4 The Nature of Coal
 1.4.1 Rank and Type of Coal

1.5 Petrographic Constituents of Bituminous Coal
 1.5.1 Maceral Analysis
 1.5.2 Vitritine
 1.5.3 Liptinite
 1.5.4 Inertinite

1.6 Non-carbonaceous Matter in Coal
 1.6.1 Moisture in Coal
 1.6.2 Mineral Matter

2 Mining and Bulk Handling

2.1 Mining Methods
 2.1.1 Introduction
 2.1.2 Underground Mining
 2.1.3 Surface Mining

2.2 Run-of-Mine (ROM Coal)
 2.2.1 General
2.2.2 Middlings
2.2.3 Rocks and Minerals Mined with Coal
2.2.4 Moisture Content

2.3 The Impact of Mining on Coal Preparation
2.3.1 ROM Quality
2.3.2 Preparation Control in Underground Mining
2.3.3 Preparation Control in Open Cut Mining
2.3.4 Selective Mining

2.4 Bulk Handling
2.4.1 Background
2.4.2 Handleability
2.4.3 Tests to Determine Handleability
2.4.4 Stacking/Stockpiling
2.4.5 Reclaiming
2.4.6 Blending

2.5 Transport and Shipping
2.5.1 Transport
2.5.2 Port Handling Facilities
2.5.3 Cargo Assembly for Export
2.5.4 Coal Loading Ports

3 The Safe Storage of Coal

3.1 Issues of Coal Storage
3.1.1 Quality and Properties

3.2 Spontaneous Heating
3.2.1 Factors Affecting Self Heating
3.2.2 Assessment of Propensity to Self Heating

3.3 Preventative Measures
3.3.1 Stockpile Design

3.4 Stockpile Management
3.4.1 Condition Monitoring
3.4.2 Remedial Action

4 Sampling of Coal

4.1 Introduction

4.2 Precision, Accuracy and Bias
4.2.1 Precision and Accuracy
4.2.2 Bias

4.3 The Amount of Coal to be Taken for the Sample
 4.3.1 The Sample Increment
 4.3.2 Number of Increments

4.4 Sample Location and Collection
 4.4.1 Sampling from Conveyors
 4.4.2 Sampling from Stockpiles
 4.4.3 Sampling from Trucks and Wagons
 4.4.4 Sampling from Screens
 4.4.5 Sampling from Slurry Streams

4.5 Mechanical Sampling

4.6 Sample Preparation
 4.6.1 Air Drying
 4.6.2 Particle Size Reduction
 4.6.3 Mixing
 4.6.4 Division
 4.6.5 Preparation

5 Coal Analysis and Testing

5.1 Background

5.2 Chemical Analyses
 5.2.1 Moisture
 5.2.2 Proximate Analysis
 5.2.3 Ultimate Analysis
 5.2.4 Other Elements of Significance
 5.2.5 Trace Elements

5.3 Reporting of Analytical Results

5.4 Physical - Chemical Properties and Tests
 5.4.1 Calorific Value
 5.4.2 Caking, Coking and Fluidity Tests
 5.4.3 Ash Fusibility (Ash Fusion)
 5.4.4 Ash Analysis
 5.4.5 Petrography
 5.4.6 Coke Strength Tests

5.5 Physical Properties and Characteristics
 5.5.1 Introduction
 5.5.2 The Mass, Volume and Density Relationship
 5.5.3 Relative Density
5.5.4 Relative Density and Ash
5.5.5 Relative Density and Other Properties of Coal
5.5.6 Bulk Density
5.5.7 Hardness and Friability
5.5.8 Miscellaneous Other Tests

5.6 Size Analysis
5.6.1 The Sieving Method
5.6.2 Presentation of Results

5.7 Accuracy of Analytical and Test Results

6 Liberation and Washability

6.1 Coal Washability Issues
6.1.1 Introduction
6.1.2 The Concept of Liberation
6.1.3 Specific Washability Related Sampling Issues
6.1.4 Size Degradation and Sample Preparation Issues

6.2 Float and Sink (F&S) Analysis
6.2.1 Procedures
6.2.2 Float and Sink Testing Apparatus
6.2.3 Float and Sink Liquids – Safety Aspects

6.3 Treatment of Washability Data
6.3.1 The Calculation of Weighted Values
6.3.2 Washability Tables

6.4 Washability Curves
6.4.1 The Cumulative Floats Curve
6.4.2 The Cumulative Sinks Curve
6.4.3 The Relative Density Curve
6.4.4 The Instantaneous Ash Curve
6.4.5 The ±0.1 Relative Density Curve
6.4.6 The Combined Curves Graph
6.4.7 The Mayer Curve

6.5 “Ease of Washing”

7 Partition

7.1 The Partition Concept
7.2 Parameters Derived from the Partition Curve
7.3 The Construction of the Partition Curve
7.4 Data Development with the use of Density Tracers

7.5 Prediction of Process Performance
7.5.1 Calculating Predicted Performance
7.5.2 Example of Performance Prediction

7.6 Partition by Size

8 Crushing and Screening

8.1 Issues of Crushing
8.1.1 The Purpose of Crushing
8.1.2 The Crushing Ratio

8.2 Types of Crushers
8.2.1 Overview
8.2.2 Power Requirements for Crushing
8.2.3 Jaw Crushers
8.2.4 Gyratory Crushers
8.2.5 Rotary Breakers
8.2.6 Hammer Mills
8.2.7 Single Roll Crushers
8.2.8 Sizers
8.2.9 Feeder/Breakers

8.3 Screening – an Overview
8.3.1 The Purpose of Screening
8.3.2 Screens for Various Applications
8.3.3 Basic Principles of Screening

8.4 Types of Screens
8.4.1 Fixed or Static Screens
8.4.2 Shaking Screens
8.4.3 Mechanically Vibrated Screens
8.4.4 High Frequency Screens
8.4.5 Resonance Screens
8.4.6 Roller Screens

8.5 Screen Decks
8.5.1 Types of Screen Deck
8.5.2 Screen Deck Materials

8.6 Efficiency and Capacity of Screens
8.6.1 Measures of Efficiency
8.6.2 Factors Influencing Capacity and Efficiency
8.7 Screening of Fines
8.7.1 Wet Screening
8.7.2 Dry Screening of Small and Fine Sizes

9 Gravity Separation - Jigs

9.1 Introduction

9.2 The Jigging Action
9.2.1 The Basic Design
9.2.2 The Air Cycle
9.2.3 The Work of Pulsation
9.2.4 Adjustments to Expansion and Suction

9.3 Types of Jig
9.3.1 The Baum Jig
9.3.2 The Under-air Jig
9.3.3 The ROMJIG
9.3.4 Small Coal Cleaning in Jigs

9.4 Rejects Removal

9.5 Operational Issues
9.5.1 Factors Affecting the Action
9.5.2 Jig Operation

9.6 Performance and Efficiency

10 Dense Medium Separation – Baths

10.1 Introduction

10.2 Solids for Medium
10.2.1 Material used Commercially
10.2.2 Specifications of Magnetite for use in Dense Medium Processes

10.3 Dense Medium Baths
10.3.1 Chance Cone
10.3.2 Wemco Cone
10.3.3 Barvoys Bath
10.3.4 Drewboy Bath
10.3.5 Tromp Bath
10.3.6 Leebar Bath
10.3.7 Wemco Drum
10.3.8 Teska Bath
10.3.9 Daniels Bath
10.4 Performance of Dense Medium Baths

10.5 Magnetite Cleaning and Recovery
 10.5.1 General Considerations
 10.5.2 The Magnetite Recovery Circuit

11 Hydrocyclones

11.1 Introduction
 11.1.1 Historical Background
 11.1.2 Uses of Cyclones

11.2 Design and Construction of Cyclones

11.3 Principles of Operation
 11.3.1 The Flow Patterns in a Cyclone
 11.3.2 Principal Variables and their Effects

11.4 Classifying and Thickening Cyclones
 11.4.1 Applications
 11.4.2 Performance of Classifying and Thickening Cyclones
 11.4.3 Stacker Cyclones

11.5 Water Washing Cyclones (WWC)
 11.5.1 Design and Operation
 11.5.2 Parnaby Natural Medium Cyclone
 11.5.3 Performance of Water Washing Cyclones

12 Dense Medium Separation – Cyclones

12.1 Background

12.2 The Principles of Dense Medium Cyclone Separation

12.3 Construction and Operation of a Dense Medium Cyclone

12.4 Dense Medium Cyclone Flowsheets
 12.4.1 Draft Tube Design Circuit
 12.4.2 Circuit with Wing Tank
 12.4.3 Pumping or Gravity?
 12.4.4 Desliming
 12.4.5 Two Stage Operation

12.5 Dense Medium Cyclone Performance
 12.5.1 Design Variables
 12.5.2 Cyclone Dimensions
12.5.3 Capacity
12.5.4 Operational Variables
12.5.5 Efficiency of Separation
12.5.6 Magnetite and Consumption

12.6 Dense Medium Cyclones for Sizes <0.5mm
12.7 Other Cyclonic Type Separators
12.8 Operating Dense Medium Cyclones – Australian Practice

13 Gravity Based Separation of Fine Coal

13.1 Introduction
13.1.1 What is Fine Coal?
13.1.2 The Issues of Fine Coal Cleaning

13.2 Flowing Film Separators
13.2.1 Shaking Surface Concentrators
13.2.2 Spiral Concentrators

13.3 Processes Based on Hindered Settling
13.3.1 The Principle of Hindered Settling
13.3.2 The Teetered Bed Separator (TBS)
13.3.3 The HydroFloat
13.3.4 The Reflux Classifier
13.3.5 Other Designs Based on Hindered Bed Separation

14 Froth Flotation

14.1 Introduction

14.2 The Principles of Flotation
14.2.1 Surface Properties of Coal and Mineral Matter
14.2.2 The Role of Collectors and Frothers
14.2.3 Flotation Performance

14.3 Assessment of Flotation Characteristics
14.3.1 Issues of Performance Definition
14.3.2 Sampling
14.3.3 Laboratory Tests
14.3.4 Pilot Plant Tests
14.3.5 Modelling

14.4 Froth Flotation Plants Operation
14.4.1 Flotation Circuit with Desliming of Feed
14.4.2 Flotation Circuit with Coal Thickener
14.4.3 Circuit for the Flotation of Ultrafines
14.4.4 Feed Preparation
14.4.5 Addition of Reagents
14.4.6 Froth Washing
14.4.7 Product Handling
14.4.8 Flotation Machines – General

14.5 Mechanically Agitated Flotation Cells
14.5.1 Cell Design
14.5.2 Choice of Cell Configuration

14.6 Column Cells
14.6.1 General
14.6.2 The “SlamJet” Sparging System
14.6.3 The “Microcel” Sparging System

14.7 Jet Flotation Cells
14.7.1 The Jameson Cell
14.7.2 The Pneuflot
14.7.3 The Imhoflot G-cell

14.8 Flotation Performance

14.9 The Estimation of Flotation Capacity

14.10 Oil Agglomeration

15 Dewatering of Product Coal

15.1 Introduction

15.2 Dewatering of Coarse Coal

15.3 Centrifuges
15.3.1 Centrifuging in General
15.3.2 Centrifuge Design and Operation

15.4 Dewatering of Fine Coal
15.4.1 Slurry Screens
15.4.2 Dewatering Cyclones
15.4.3 Filtration

15.5 Vacuum Filters
15.5.1 Drum Filters
15.5.2 Disc Filters
15.5.3 The Horizontal Vacuum Belt Filter (HVBF)
15.5.4 The Hyperbaric Filter

15.6 Screen Bowl Centrifuges
16 Dewatering of Rejects

16.1 Introduction
16.2 Dewatering Coarse and Small Rejects
16.3 Thickening of Tailings
 16.3.1 Introduction
 16.3.2 Thickening
16.4 Thickeners
 16.4.1 Conventional Thickeners
 16.4.2 High Capacity/High Rate Thickeners
 16.4.3 Paste Thickeners
 16.4.4 Other Types of Thickeners
 16.4.5 Thickener Troubleshooting
 16.4.6 Froth on Thickeners
16.5 Dewatering of Tailings
 16.5.1 Introduction
 16.5.2 Solid Bowl Centrifuges
 16.5.3 Filtration of Tailings
16.6 Closed Water Circuits
16.7 Water Treatment and Discharge from Plant/Mine-site

17 Dry Cleaning

17.1 Introduction
 17.1.1 Historical Notes
 17.1.2 Characteristics and Performance of Dry Cleaning Processes
 17.1.3 Dry Cleaning in the 21st Century
17.2 Air Dense Medium Fluidised Bed
17.3 Air Jigs
17.4 Coal Sorting

18 In-plant Handling and Rejects Disposal

18.1 Introduction
18.2 Feeders
18.3 Chutes
18.4 Conveying
18.5 Pumps and Pumping
 18.5.1 Types of Pumps
 18.5.2 Pump Sizing

18.6 Valves

18.7 Equipment Protection

18.8 Rejects Disposal
 18.8.1 General Considerations
 18.8.2 Traditional Separate Coarse and Tailings Disposal
 18.8.3 “Dry” Disposal
 18.8.4 Co-disposal
 18.8.5 Other Methods – Future Trends

18.9 Reclaiming Old Tailings Dams

19 Instrumentation and Controls

19.1 Introduction

19.2 Instrumentation and Measurement
 19.2.1 Measurement of Mass Flow
 19.2.2 Measurement of Level
 19.2.3 Measurement of Volumetric Flow Rate
 19.2.4 Measurement of Density
 19.2.5 Ash Measurement
 19.2.6 Elemental Analysis
 19.2.7 Moisture Measurement
 19.2.8 Coal Slurry Ash Analysers

19.3 Process Control
 19.3.1 Background
 19.3.2 Hardware
 19.3.3 The Control System
 19.3.4 Jig Control
 19.3.5 Dense Medium Control using Density Gauges
 19.3.6 Thickener Control
 19.3.7 Flotation Control
 19.3.8 Filtration Control

20 Metallurgical Supervision and Controls

20.1 Introduction

20.2 Samples and Measurements
20.2.1 Flowrate
20.2.2 Mass Flowrate

20.3 Mass Balancing
20.3.1 Process Yield
20.3.2 Process Recovery
20.3.3 The Use of Size Distribution in Mass Balancing
20.3.4 The Use of Dilution Ratios in Mass Balancing
20.3.5 Sources of Error and Misinterpretation in Mass Balancing

20.4 Control Targets
20.4.1 Yield Optimisation or Loss Minimisation?
20.4.2 The Value of Consistency

20.5 Performance Monitoring
20.5.1 The Key Drivers of Performance
20.5.2 Methods of Performance Monitoring
20.5.3 Routine Checks
20.5.4 Periodic Performance Audits
20.5.5 Long Term Trending – Data Historian

21 Data Development for Design

21.1 Introduction

21.2 Type and Detail of Data Required

21.3 Anticipated Use and Markets

21.4 Selection of Data Sources

21.5 Generation of Data from Bore Core Samples

21.6 Data from Bulk Samples
21.6.1 Selection and Collection of Bulk Sample
21.6.2 Analysis and Testing

21.7 Data from the Geological Model and the Mine Plan

21.8 Historic and Regional Data

21.9 Interpretation of Data
21.9.1 Washability
21.9.2 Additivity
21.9.3 The Design ‘Envelopes’
22 Process Selection and Flowsheet Design

22.1 The Road to Good Design
 22.1.1 Fit for the Purpose
 22.1.2 The Design Team

22.2 Determination of Plant Capacity

22.3 Characteristics of Available Processes

22.4 The Influence of Coal Properties on Process Selection

22.5 Assessment of Alternatives

22.6 Conceptual Flowsheet Design

22.7 Flowsheet Standards

23 Example of Process Selection and Flowsheet Design

23.1 Limitations and Assumptions

23.2 Information Provided
 23.2.1 Laboratory Data
 23.2.2 Partition Data

23.3 Design Calculations

Review Answers

Bibliography

Australian Standards